<u>강의 계획서</u>

저자(교수	자)	학과	제작연도	강좌유형 학점	
이영수	이영수		2019	블렌디드	3
⊐ a) a ta	한글	미분적분학2와 응용			
교과목명	영문	Calculus 2 and its Applications			
		미분적분학 (Calculus)'은 적분과 미분이라는 두 가지 주요 아이디어를 토대로 한			
교과개요 및 학습목표	한글	수학의 중심 분야이다. 이 강좌에서 우리는 미분적분학1에 이어서 두 번째 부분을			
		계속해서 학습하는데, 주로 다변수 미적분에 초점을 맞춘다. 우리는 미분 및 적분			
		법의 아이디어를 여러 변수의 함수로 확장합니다.			
	영문	'Calculus' is a central branch of mathematics, built on two major			
		complimentary ideas-integration and differentiation. In this course, we			
		continue to study the second part of the Calculus, focused on mainly			
		mluti-variable Calculus. We then extend the ideas of differential and			
		integral calculus to functions of several variables.			
키워드	한글	테일러급수, 편도함수, 방향도함수, 이중적분			
기워드	영문	taylor series, partial derivative, directional derivative, double integral			
교재 및 참고문헌		스튜어트, 미분적분학 8판, 2017, 북스힐			

차시	강의 주제	강의 내용	비고
1	강의 소개, 매개변수방정식	9.1 매개변수방정식으로 정의된 곡선, 9.2 (1)접선	
2	매개변수곡선, 극좌표	9.2 (2) 넓이 호의 길이 회전곡면의 넓이, 9.3 극좌표	
3	극좌표에서 넓이와 길이	9.4 극좌표에서 넓이와 길이, 10.2~10.6 급수의 판정법	
4	무한급수	10.8 거듭제곱급수, 10.9 함수를 거듭제곱급수로 나타내기	
5	무한급수	10.10 테일러급수와 매클로린급수 (1)(2)	
6	벡터와 공간기하학	11.1 3차원 좌표계, 11.2 벡터, 11.3 내적	
7	벡터와 공간기하학	11.4 외적, 11.5 직선 및 평면의 방정식	
8	벡터함수	12.1 벡터함수와 공간곡선, 12.2 벡터함수의 도함수와 적분	
9	편도함수	12.3 호의 길이와 곡률, 13.1 다변수함수, 13.2 극한과 연속	
10	편도함수	13.3 편도함수, 13.4 접평면과 선형근사	
11	편도함수	13.5 연쇄법칙, 13.6 방향도함수와 기울기 벡터	
12	다중적분	13.7 최댓값 최솟값, 14.1 직사각형 영역에서 이중적분	
13	다중적분	14.2 일반 영역에서 이중적분, 14.3 극좌표에서 이중적분	